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NUMERICAL CAICULATION OF SUPERSONIC FLOWS OF A
PERFECT GAS OVER BODIES OF REVOLUTION
AT SMALL ANGLES OF YAW
By John V. Rakich

Ames Research Center
Moffett Field, Calif.

SUMMARY

A linearized characteristics method is used to obtain the first-order
effects of yaw in the supersonic portion of the flow over bodies of revolu-
tion. The first-order perturbation equations are derived in terms of pressure
and flow-deflection angles as dependent variables and are incorporated into
an existing method of characteristics computer program for axisymmetric flow.
Some example flows obtained from the resulting program are presented for the
purpose of establishing the accuracy and applicability of the method.

The method yields results which are in agreement with Kopal's exact solu-
tions for cone flow, and surface pressures for blunt-nosed cones tend to the
pointed cone values at a large distance from the nose. The first-order per-
turbation field for a sphere-cone is compared with published results obtained
by basically the same method; there is a general agreement of the results, but
some differences are noted. TFor an ogive of fineness ratio 3, comparison with
experiment and shock-expansion theories indicates applicability for yaw angles
up to about 5°. In the case of spherically blunted 15° and 30° cones, the
present theory agrees well with experiment for yaw angles up to 20 and 5°,
respectively. Estimates based on pointed cone theories indicate the range of
angles to which the present linear approximation can be applied.

INTRODUCTION

The subsonic region near the stagnation point of a blunt body has only
recently, and with the help of modern computers, been accurately determined
(see, e.g., refs. 1 and 2). These "blunt body" solutions typically extend
only slightly into the region of supersonic flow and it has been necessary to
use the method of characteristics in order to continue the solutions into the
supersonic region. This matching of the two methods of solution has been
achieved for unyawed bodies of revolution (ref. 3). In the present paper, the
method of characteristics is used to continue the blunt body solution into the
supersonic region for the case of a yawed body of revolution. However, to
avoid the complexity of a three-dimensional characteristics approach, well-
established perturbation techniques are used (refs. 4 to 13). The procedure
of coupling the method of characteristics with the perturbation technique is



called a linearized characteristics method (ref. 8). Tts theoretical basis is
adequately covered in the referenced works and will not be repeated herein.
However, the present equations and procedures differ in some detalls from
those of the references. Therefore the equations used in the computer program
will be derived and some aspects of the program described. Results for a few
selected bodies will be presented and compared with experiment and with the
results of other theories.

Subsequent to the initiation of the present study, reference 1L presented
results of calculations of the supersonic flow over a spherically blunted cone
at small yaw. These results were obtained by basically the same method used
in the present study (i.e., linearized characteristics method). Some of the
results of reference 14 are reproduced in the present paper for comparison,
and some differences with present results and techniques are discussed.

SYMBOLS
a speed of sound
cp specific heat at constant pressure
cv specific heat at constant volume
Cy normal-force coefficient
Cp pressure coefficient
d body diameter
iy fineness ratio, g
h enthalpy
X constant in body boundary condition (eq. (26))
KrsKq hypersonic similarity parameters
L body length
M Mach number
e pressure
2
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R

radial coordinate, cylindrical coordinate system
radial distance to shock wave

nose radius for blunt-nosed body

entropy

velocity component in x direction

velocity component in 1r direction

scalar magnitude of velocity vector (V = Vg)
velocity vector

velocity component in circumferential direction (crossflow
velocity)

distance to center of pressure
cylindrical coordinates

rectangular coordinates

streamline coordinates (see fig. 1)
unit vectors, rectangular coordinates
unit vectors, cylindrical coordinates
unit vectors, streamline coordinates
shock-oriented unit vectors

angle of yaw, radians

B -1

specific-heat ratio

left-running characteristic coordinate

flow angle measured from X axis in meridional plane, tan”
(fig. 1)

right-running characteristic coordinate
density

shock-wave angle measured from x axis



1V

0 crossflow angle, sin” v
0] azimuthal coordinate, cylindrical coordinate system
Subscripts

le] zero-order varilable from solution of axisymmetric, nonyaw flow

1 first-order perturbation variable, implies a derivative with respect to
o which is a function of x and r only, as defined by equations (3)
and (45)

@ Tirst-order perturbation variable, implies a derivative with respect to

o which is a function of x, r, and ¢, as defined by equations (%)

o free-stream conditions

B conditions on the body

m coordinates fixed with respect to the meridional plane (fig. 1)
S conditions immediately behind the shock wave

Superscripts

! coordinates fixed with respect to the body axis

" coordinates fixed with respect to the shock axis
DEVELOPMENT OF THE EQUATIONS AND BOUNDARY CONDITIONS

Calculation of the flow over a specified body by the method of character-
istics usually requires that initial conditions be specified along some curve
between the body and the shock wave. For unyawed bodies of revolution, the
starting (initial) data are cbtained from cone flow solutions for pointed
bodies and from blunt-body solutions for blunt-nosed bodies. The present
problem of yawed bodies of revolution therefore requires solutions for yawed
cones and yawed blunt bodies to provide starting data. While solutions for
yawed cones are available (ref. 4), none are currently available for the gen-
eral blunt body. However, for a spherical body, the axisymmetric solution is
independent of the yaw angle and therefore provides starting data for yawed
bodies with spherical tips. It i1s only necessary that any deviations from the
spherical shape should occur in the supersonic region of flow (or, more pre-
cisely, downstream of the limiting characteristic between the sonic line and

the body) .
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In the present development of the equations, the initial data are assumed
given by the appropriate cone or sphere solution and, also, the entire flow
field for the unyawed body is assumed known from previous calculation. The
problem then is to develop the equations and boundary conditions for the per-
turbation flow field due to yawing the body by a small angle. The analysis
is confined to the supersonic portion of the flow field and will make use of
the method of characteristics. The method will not be developed from its
basic elements, since this was done previously (refs. 8, 15, or 16, e.g.).

In reference 8 it is shown that the characteristics of the perturbation field
are identical with those of the axisymmetric flow. The first step of the
analysis will be to obtain the first-order perturbation equations which
describe the flow along these characteristic directions; these are the com-
patibility equations of characteristics theory.

Equations

The required compatibility equations can be derived in a varlety of forms
depending on the choice of dependent varisbles. One of the simpler forms is
obtained if pressure and flow angles are chosen as dependent variables (see,
e.g., ref. 16). This approach is followed herein, and the analysis begins
with the equations of motion expressed in intrinsic or streamline coordinates.
However, since the equations in reference 16 are valid only for two-
dimensional or axisymmetric flows, it will be necessary first to obtain them
in a more general form. This is done in appendix A. There it is shown that
for flows which deviate only slightly from axisymmetric flow, the following
equations apply

BZ dp , 30 , X , sin ©

ypMZ Os  on T T T © (12)
1_9p , 90 _

e on " os C 0 (1v)

1l %, % esino_, (Le)

ypMZ Ot  Os T

The intrinsic coordinates (s,n,t) used in these equations are illustrated in
figure 1 in terms of a unit vector s, _parallel to the velocity vector V,

and unit vectors n and t, normal to V, the normal n lies in the meridional
plane, ¢ = constant. This orthogonal set may be described in terms of two
rotations of a reference system of axes (xm, T, zm) initially fixed with
respect to the meridional plane. The initial system is rotated by angle 6
about the zy axis, and the resultant system is rotated by angle ¢ about
the n axis to produce the desired s,n,t system. The angle 8 is called
the flow angle and @ +the crossflow angle. These angles and the pressure

are the dependent variables in equations ().

Expansions for the dependent variables.- The usual procedure for obtain-
ing the perturbation equations is to expand all dependent variables in the




following type of series

p(x,r,9;a) = py(x,r) + a{i: pl(x,r)cos 10 + 2:;pm(x,r)sin m@J (2)
1 m

where X, r, ® are cylindrical coordinates (fig. 1), and p, is obtained
from the solution of the nonyaw problem. For the first-order yaw problem,
however, it is shown in references 4 and 8 that to be consistent with the
boundary conditions, it is necessary to retain only the first term of the sine
series for crossflow angle (or crossflow velocity) and the first term of the
cosine series for all other variables. Thus, in practice, the expressions
used are

p(x,r,2;a) = py(x,r) + ap,(x,r)cos @

o(x,r,0;a) = 85(x,r) + abi(x,r)cos @

(3)

aP,(x,r)sin @

@(X;T;QSQ)
ete.

It will be convenient at times to use perturbation quantities which contain the
¢ dependence. These will be denoted by an o subscript and defined as

follows

Pa(x:r}®) = pl(x,r)cos 0]

0, (x,7,0) = B1(x,r)cos @

(&)
Q@(X:r;@) = @1(X,r)sin (o)
etec.

These perturbation guantities may also be identified as derivatives with
respect to yaw angle (e.g., b, = (9p/da),.,). However, for brevity, the nota-
tion indicated in equations (3) and (4) will be used in the development of the
method and in the results.

Expansions for the derivatives.- In addition to the substitutions given
above for the dependent variables, expansions must also be developed for the
independent variables s,n,t which appear in the derivatives in equations (1).
Specifically, a transformation is needed which resolves the derivatives 0/0s,
d/dn, 9/dt into components along the intrinsic coordinates sg,ng,to of the
zero yaw flow field. To this end the set of unit vectors &,n,t in figure 1
is written in terms of the corresponding set for zero yaw Eo,ﬁo,fo, plus two
small rotations. This is illustrated in figure 2 which shows the xp,rpm,2zZnp
coordinate system of figure 1 in a different view. The first rotation is
about 1ty by angle a6y, and the second about ny by angle WPy . It is
easily verified by inspection of figure 2 that the following vector relation-
ships hold to the order of this analysis.



S = 8o + afy Do + APy, To (52)
N = 1np - by So (5p)
T = T':o - Py, Bo (5¢)

Thus, to first order in o, the gradients along the 5, n, and t directions
are

5 3 3 3

3 " 55 T Ny t R Bto> (62)
o __ 9o _ o .

3 Smo | % 3sg (60)
5 3

D 0 o D 6
3 otg e 3 (6e)

First-order perturbation equations.- All necessary elements are now
avalilable so that the corresponding first-order equations can be deduced from
equations (1). However, in order to reduce the number of perturbation gquan-
tities, it will be convenient to express the Mach number perturbations in
terms of pressure and density perturbations as follows.

_v_Yo Vo (Vo _ 2« '
M—a_ao+qao VO aop (7)

The sound-speed perturbation, ag, can, in turn, be eliminated by use of the
energy equation in its integrated form

a2 + <?’élz>ve = 8,2

a® = as® - oy - 1) VoV,

i

constant (8)

which yilelds

1

a02 + 20808q,

and

aq = - <7 > >M0Vq‘ (9)

On the other hand, the sound speed may be eliminated in favor of pressure and
density by the relation

a2 =y % (10)
Applying the linearizing procedure and conbining with equation (9) gives the

following expression for the wvelocity perturbation in terms of pressure and
density perturbations



Vo 1 <?m p§> (
Yo _ .1 (Za_ o 11)
Vo 2 \Po Po

which, with equations (9) and (T), gives the desired expression

My = - %? é;% - gg) [i + z;—:iijﬁgé] (12)

Equations (3), (&), (6), and (12) can be used to obtain the following first-
order perturbation equations from equations (1):

2
004 N Bo _ gpl = - %(¢l + 61 cos Bp)
aIlo 7P0Mo So

a2,
D SN @J—l - ﬁ) (r - 1), Bo _ 9P,
P 2 2
P, o o Bo 7P M.~ O
Bo® Op aeo>
-8 o _ 1
t \pt2 Oy 98, (132)

361 1 0Py _ [P, (B P 2 1 9P
+ 550 = )P B 5 1+ 5 33
dso 7DoMy> oo o o o) (7 - 1)Mg YPoMy” g

' 1 dp, 96,
- 13b
*+ 62 <;P0M02 dsg On (130)
P, <' 1 9Py sin 9é> Py
—1 - 1
ds0 Va1 "PoMo” dso r i r7PoMs> (13¢)

It is noted that equations (13) are
independent of the azimuthal angle @,
and the problem is reduced to one
involving only two space variables. For
* the solution of this problem by the
e method of characteristics it is neces-
0 sary to project the first two of equa-
------ Streamline tions (13) into the characteristic
directions £ and 7 (sketch (a)); equa-

, x tion (13e) is already in the desired
form since it contains the derivative
csnl Lt of ®,; in the third characteristic
s

K direction, that is, along the stream-
Sketch (a) line so. To obtain these equations,

o




the approach given in references 17 and 18 is used. Thus, application of the
following transformation from sg,ng to §,7n coordinates

3 )
dsg EBO <$ﬂ ot

1_&@___
ong T2 \9n

results, after some manipulation, in equations for p, and 61 which involve

derivatives in one direction only (i.e., the compatibility equations of char-
acteristic theory). These are the following equations upon which the present
numerical computations are based:

(14)

dp, 06
=2 4 2 =F, -G 1
31 + e 1 (152)
op 38
A=2 O 2 _@w_ - ¢ 15b
3  or 2 (150)
where the coefficients are
op, op 61 (6 d6
_9 —90 - —0 J1 (2% _ g @}
Fl = MO [(BOB + 9_]_) Bso + (C Boel) ano:] + Mo aSo Bo Bno
Ay 9p, 9P, 1 (360 300
F, = ¥, [(BOB - 01) SE; - (€ - ByO1) SE;] + ﬁ; S50 + Bo 0
®, + 6, cos 9,
G = Mor
A= Po 5
7Poly

B=%+Bo B " _>[ (7-21)Mo:l

c=%'<—"_>[ (7—21)MoJ

One additional relation is needed to determine the density perturbation, pq,
which appears in the coefficients of equations (14). The usual approach is
to introduce the entropy function



P _ Po (5-50) /ey (16)

o7  p 7

o

and apply the condition that the entropy remain constant on streamlines
)
B oo (27)

The following first-order equation for density perturbation results when
equation (16) is linearized
Po (Py _ B2
P =7 <§g cv> (18)

and applying the transformation (6a) gives the needed equation for entropy
perturbation

oS as

— = -0; —° (19)

BSO - d.l’lo

The total derivative is used here since Sy 1s a function of n, only. The
enthalpy and temperature perturbations, though not necessary for the present
analysis, may be obtained from the thermal and caloric edquations of state.
The result 1is

Y p
hl = CpTl = CPTO <‘I%- = b—;> (20)

Equations (13e), (15a,b), (18), and (19) are the set which will be integrated
between the shock wave and the body surfaces subject to boundary conditions on
these surfaces. These boundary conditions are derived in the next section.

Initial and Boundary Conditions

In the preceding analysis, use
was made of the x,r,® coordinate
system which is fixed with respect to
the direction of the undisturbed
stream (see fig. l). It will be con-
venient from the computational stand-
point to continue with this wind-
oriented system. However, since the
body axis system naturally enters the
x' (Body axis) discussion of initial and boundary

conditions, it is pertinent at this
point to show the difference between
these coordinate systems by means of a
simple example. Consider the flow over a
Sketch (b) sphere at supersonic speeds, sketch (b).

Data 1nput lime,
A\

Sonic line~
N

x {Wind axis)

,-Shock wave

10
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As the body is rotated by angle o, an observer fixed with respect to Vg
does not sense a change in the flow, whereas an observer fixed with the body
does sense a change. This change can be computed from a knowledge of the
axisymmetric flow field, and the equations for such a computation are derived
in appendix B. These equations will be used in the specification of the
boundsry conditions below. Also, since it is usually desirable that final
results be expressed in terms of body axes, this transformation is included as

an option in the computer program described below.

Initial conditions.- In order to begin the computation of the flow field
it is necessary to specify, along a line between the body and the shock, val-
ues for the four perturbation quantities p,, 031, 81, P; and also the shock
wave angle and position perturbations. (These quantities are introduced in
the shock conditions below.) In the case of a blunt-nosed body, this initial-
data line must be slightly downstream of the sonic line as shown in sketch (Db).
There is no restriction in the present analysis as to the nature of the body
upstream of the initial-data line. TFor the general blunt-body flow, it may be
possible to use the methods of reference 19, for example, to provide the
necessary initial data. However, in the present application this problem is
avoided by considering only spherically blunted or pointed bodies. TFor the
spherically blunted body, all perturbation variables are initially zero. TFor
the computation of flow over sharp-nosed bodies, initial values may be
obtained from tabulated results for cone flow (ref. 4) or from a direct calcu-
lation of cone flow by the present methods.

Body conditions.- Two conditions at the body surface specify (1) the flow
angle, 6, and (2) the entropy, S, at the surface. The prescribed value, 6g,
of the flow angle 1s given by the body geometry, while the entropy, Sg,
depends on the angle of the shock wave through which the surface streamline
passes. The problem at hand is to obtain the appropriate conditions on the
perturbation quantities 61 and S;. These conditions can be derived directly
in terms of wind axes. However, it is simpler to work first with body axes
and’ then apply the transformations given in appendix B to convert the results
to wind axes.

The usual expansion procedure can be used to write the body conditions as
follows in terms of body-axis (primed) variables

Op + a1’ cos 9

it

ép (21)

S0 + aSy1' cos 9!

Sy (22)
It is immediately evident for the flow angle that
01" =0 - (23)

11



because the body angle cannot change and 65 = 6g. Specification of the
entropy condition is more complicated since, for the general blunt body, the
entropy perturbation at the surface may depend on the nose shape (see ref. 19).
While this does not present any difficulty for the present method, nothing
detailed can be stated about the general case until such blunt-body solutions
are available. However, the entropy condition can be established for two
specific cases of interest: (1) spherically blunted bodies and (2) pointed
bodies. TFor the spherical nose, the surface entropy does not change for small
angles of yaw, and therefore

S1' =0 (spherical nose) (2ha)

For pointed bodies, the entropy is constant along meridional planes,
®' = constant. Then

S1' = S1c (pointed nose) (2kp)

where Sic is the entropy perturbation obtained from the solution for a yawed
cone. This latter condition seems to contradict the notion that the body sur-
face should have a single value of entropy for all values of @'. It is
pointed out in reference 8 that the entropy variation with @' is valid only
outside a very thin "vortical" layer which is close to the body surface; also,
it is stated that the pressure does not change across the thin layer. There-
fore, equation (24b) is taken to be the proper condition for the "outer" flow.
It is worth noting that in reference 20 it was concluded that this vortical
layer could be neglected when the boundary layer on a yawed cone was studied.

The final step in obtaining the surface conditions is the conversion of
equations (23) and (24) into the wind-axis system. This is done with the use
of equations (BY) and (B16). The result is

3 ., %

01 = -
1 1L+ X S rax (25)
and
SIS 9S50
S, = _ - —
1=K+ x » r . (26)
where

K = 0, spherical nose
Sic, pointed nose
Since the entropy, So, is a function of the normal coordinate, ng, only equa-
tion (26) may be written as
dSe
dng

-

(a7)

S1 =K - (x sin 65 + T cos 6p)

12
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Equations (25) and (27) provide the desired body conditions, so attention is
now directed to the boundary conditions at the shock wave.

Shock conditions.- The conditions on pressure, density, and flow-angle
perturbations will be derived first with the use of wind coordinates. The
procedure initially follows that of ref-
erence 14 in that the shock wave locus -
is expanded in terms of the usual
series for o and ®. However, since
the Jump conditions are conveniently
expressed in terms of shock-wave angle,
0, this parameter is also introduced in
the present analysis. With use of the
notation shown in sketch (c), the shock
position and angle are written in the
following linearized form:

-a R

“~Shock at a

R(x,®;a) = Ry(x) + aRi(x)cos @  (28)

U(X:QEC")

1l

oo(x) + awoi(x)cos &  (29)

If one imagines a cone tangent to the

shock at point A, the angle perturba- Sketch (c)

tion, o,, is easily recognized as the

ratio of shock to body yaw angles. The two shock perturbation parameters,
that will appear in the boundary conditions, are unknown functions which must
be specified initially and computed point by point along the shock surface.
To this end, an additional equation is available which relates Ri to oq.
This is obtained from the geometrical relation

%E = tan o (30)

Using equations (28) and (29) results in

—= = g1 Sec< © 31
dx 1 [e) ( )
The problem now is to specify pj, Py, 01, and ¢, in terms of Ri, o1, and
the jump conditions (it is more straightforward here to work with density
rather than entropy). The first three of these variables are considered in
the next paragraph and the crossflow angle will follow.

Conditions on pi, Py, and O1: For uniform free-stream conditions, the
conditions immedistely behind the shock are functions of o only and, hence,
may be expanded in series as follows. (The analysis is given for pressure
only, but holds also for density and flow angle with change of notation.)

13



dp _ dp do
Dy = pso T Ot = Pg T T (32)

Here, do/da is shock-angle perturbation, Oy, and dp/do can be evaluated in
terms of the obligue shock relations (see, e.g., ref. 21). In equation (32),
Pg 1s the pressure behind the yawed shock (point B, sketch (e¢)). For the
bresent problem, however, the calculations are made along the characteristics
of the axisymmetric field, and therefore the pressure perturbation at point A
must be specified. This can be done by expanding the pressure in terms of
radial distance from point A.

Py = Pg = Py + <§§>A(RB - Rp) + 0(a?) (33)

By substitution of equation (33) into (32), and with the use of equations (28)
and (29), the boundary condition on p, is cbtained

3
d. D
oq <a~§> - R1 —a—f (34)

I

Py

Similarly, for the density and flow angle
. 30
ad 0
Py = Oy <—-——d§> - Ra <—~ar> (35)

oq <%§> - Ri '%58) (36)

For a perfect gas, the derivatives with respect to shock angle are

il

01

R ? (37)

3o "7+ 1 p M~ sin oo cos dg

i

if

sin g5 cos g
204 {%ot Og ~ > e o > } (38)
do sin® oo + [2/(7 - 1)M 7]

gg 1 - Sin(o’o - GO)COS<UO - 922 + )4' COSE(Uo_ - eo)Q (39)

. 2 .
do sin oy cos Jg (v + l)Mm sin® T

Condition on @,: The shock condition for crossflow angle ¢, is
obtained from the conservation of tangential momentum in the azimuthal plane

14



of the shock wave. For the application
of this condition it is helpful to use
a shock-oriented coordinate system, and
to consider the cone tangent to the
shock shown in sketch (d). The cone is
yawed by the angle -ao,. Conservation
of tangential momentum across the shock
requires that

—_

w' = V; . et (40)

Here et 1is a unit vector oriented in
the azimuthal direction with respect to
the shock (sketch (d)), w" is the
velocity component in the €£ direction, and the double prime indicates a
shock-oriented coordinate system. For the plane ©" = n/2, the component of
V, along et is -V, sin(-aoq), and therefore the scalar product in equa-
tion (40) gives, in the general case,

Sketch (d)

V, . 8 = Voo, sin o (41)
Thus,
1
1 W-l Voo
= —— =50 L
CP]_ VO VO 1 ( 2)

Now, in order to convert the above condition into wind axes, the transforma-
tions developed in appendix B can be used. Equation (BLT7) applies here except
for the factor -o0,, since -ao, 1is the rotation angle for the present case.
Therefore the equation which must be used here is

Q= P,;" - oq <§os O - % sin 9;> (43)

(Equation (B4) need not be considered since @, = O.) The boundary condition
on crossflow angle is therefore

9, = o, <¥§ - cos 6, + = sin 9;) (Lh)

o
This completes the specification of the equations and boundary conditions
of the problem. Attention is now directed to a brief description of the com-

puter program written for the solution of the equations and to some of the
results obtained from the program.

NUMERICAL COMPUTATIONS

Equations and boundary conditions for the first-order-perturbation
flow field have been presented in the previous sections. The solution of

15



these equations by the method of characteristics was programmed, in FORTRAN
machine language, for the IBM 7090 computer. Since the solution of the first-
order problem required a detailed knowledge of the zero-order (zero angle of
yaw) flow field, the perturbation program was incorporated into an existing
program for axisymmetric flow (ref. 3). This program was modified to compute
perturbation quantities at each mesh point, after the zero-order quantities
had been computed. DPertinent aspects of the computer program, as modified,
are described below, followed by a presentation of some results.

* Computer Program

The basic computing unit of the
program involves mesh points A, B, and
g C shown in sketch (e) for body, field,
and shock points. The compatibility
Shock 4 IS and boundary conditicns are used in
the usual manner to determine data at
point C in terms of known data at
points A and B. A fourth point, D, is
used in the body and field calculations
" in order to obtain a quadratic inter-
A polation for certain variables as
explained below. The procedure for the
perturbation problem differs from that
for axisymmetric flow in that (1) gra-
dients of zero-~order quantities must
be computed and (2) the entropy pertur-
Body bation and crossflow angle must be
integrated along the streamline direc-
tion, sp. These two points are dis-
cussed next. )

Sketch (e)

Gradients of the axisymmetric field.- A linear, backward difference
method is used to compute the gradients of pressure, p,, and flow angle, 0O,
along the characteristic directions for field points, and along characteristic
and boundary directions for boundary points. Thus, for example, from the dif-
ference of data at points A and C, gradients are obtained which are applied
to point C. The gradients obtained in this manner for two oblique directions
are then transformed to components in the sy and ng directions for use in
the calculations.

At body and field points, entropy is approximated by a second-degree
polynomial in the normal coordinate with the use of data at points A, B,
and D (sketch (e)). The gradient thus obtained is applied at point C. For
the shock point, the entropy gradient is obtained by a linear approximation.

At the body, the pressure gradient in the normal direction, Opy/ng, is
computed directly from the momentum equation (1b) and the boundsry condition
on Bg-

16
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Calculation for @3 and Si.- The equations for crossflow angle and
entropy perturbations (eqs. (13c) and (19)) involve the derivative of these
gquantities with respect to sp only. These quantities are, in general, func-
tions of both so and ng, and therefore the equations apply along a line
no = constant. The problem which arises in the numerical computation is that
the field points A, B, C, and D do not correspond to the same value of ng
(see sketeh (e)). This problem is resolved in the following manner. With the
use of slopes defined by equations (13c) and (19), the data at B and D are

projected forward, in the so direction, to the line AB'. The variables @3
and Si are then evaluated at point 'E by means of guadratic interpolation with
data at points A, D', and B'. Evaluation of these wvariables at point C is

then completed with the help, once again, of equations (13c) and (19) and the
data at point E.

Input data.- The computer program requires input information giving free-
stream conditions, and starting data at as many as 40 points along a nonchar-
acteristic line between the body and the shock. These data include (1)
starting values x, r, V, 8, p, and p for the axisymmetric flow, and (2) the
first-order perturbation quantities Vi, 91, Pi, p1, and pi. For the results
presented herein, these starting data were derived in the following manner.

For the pointed body, starting data was obtained from a solution for the
flow over the tangent cone to the pointed nose. While some such solutions are
tabulated in reference 5, the cone angles and Mach numbers are limited.
Therefore, in order to provide for arbitrary conditions, the methods presently
being described were specialized to the cone problem. The somewhat simplified
equations were then programmed to provide solutions to cone flow, and these
results were used for input to the general program. The results of this cone
program are compared with those of reference 5 in the following section.

For the blunt-nosed bodies, starting values for the axisymmetric flow
were obtained from a computer program based on the inverse method of refer-
ences 1 and 2. Since the blunt-body results presented are restricted to
spherical-nosed bodies, all starting perturbation quantities were set equal to
zero.

Specification of initial data as described above permits the present com-
puter programs to be used for the computation of flows over pointed, or spher-
ically blunted bodies of revolution at small angles of yaw. A number of these
flows were obtained, and some of the results are presented in the next section
with the object of establishing the accuracy and range of applicability of the
linearized characteristics method.

Results

-

The computer programs described herein make it possible to obtain the
detailed flow fields over particular bodies with a small manual effort and,
therefore, a detailed presentation or tabulation of results is not attempted.
However, in order that the computer programs may be used with confidence, this
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section will present results which are intended to show the accuracy and range
of applicability of the method. It is important to recall that the perturba-
tion variables obtained from the present solution are, strictly speaking,
derivatives with respect to yaw angle as defined by equations (3) and (4).
Specifically, the perturbation variables shown in the following results may be
written

cos @ \o/g=0

1 6p> )

Py, =

01 = L -—B—Q>

cos ® \Oa/g-0o

P = x §9
i- cos @ BCL a=0

_1@>
Pr = sin ® \Oo, =0

and so on. Therefore, the applicability of the method depends primarily on
the range of yaw angles over which a linear approximation may be used. Before
this question can be answered, however, 1t is necessary to establish the
accuracy of the numerical computations.

Accuracy of the numerical computations.- Two methods are used herein to
assess the numerical accuracy: (1) a direct comparison with other numerical
results, and (2) a self-comparison of the results obtained with various char-
acteristic mesh sizes. The first check can, of course, be made only in par-
ticular cases. One such case is the yawed cone for which accurate tabulated
results of reference 5 are available (note that corrections to the crossflow
velocity given in reference 6 must be used with the tabular data). A computer
program based on the present linearized characteristics method was written for
the cone problem, and results of this program are shown in figure 3 together
with the results of reference 5. First-order perturbations to the pressure,
© density, flow angle, and crossflow angle are presented for a 15° cone at two
Mach nunmbers. It may be seen that the general form of the present solution
agrees with that of reference S but that there are some small differences.

The effect of mesh size on these differences was investigated by recomputing
the high Mach number case with differing numbers of steps between the shock
and body. This effect is shown in figure I where the reciprocal of the number
of steps is plotted on the abscissa. The variation of the pressure perturba-
tion is nearly linear and is easily extrapolated to zero mesh size which pre-
sumably is the exact value. This extrapolated pressure, labeled pl(m),
differs from the result of reference 5 by less than 0.l percent, and is used
to compute the relative error also shown in figure I, The advantage of
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computing the relative error in this way is that it can be applied when exact
solutions are not available. ©Such is the case for the ogive which is
presented next.

Figure 5 shows the axial variation of the surface pressure perturbation
on a fineness ratio 3 ogive at a Mach number of 5.05. Initial values for the
ogive were obtained from the cone program; the starting tangent-cone was
assumed to be 1 percent of the ogive length. Three solutions are shown in
figure 5, corresponding to varying mesh sizes as controlled by the number of
initial data points. Initial values of the surface pressure perturbation are
the same for the three solutions, but numerical errors which depend on mesh
size are introduced at downstream points. Figure 6 shows the effect of the
mesh size on the surface pressure perturbation and the relative error at two
body stations. For the finest mesh presented, the relative error is less than
4 percent; computing time on the IBM 7090 was approximately 10 minutes for
this case.

Attention is now directed to a typical blunt-nosed body. Figure T shows
the axial variation of surface pressure perturbation on a 150 sphere-cone at
a Mach nunber of 10. This figure, as in the previous example, presents
results for three solutions corresponding to different mesh sizes. These
solutions are in reasonable agreement, and it is noted that they approach the
cone value at a large distance from the nose. (The pressure perturbation
curve has a discontinuous slope at the point of juncture between the sphere
and cone; regions with discontinuous slopes also appear at downstream points
(x/Rb = 8, 17) which correspond to subsequent reflections of the Mach wave
from the sphere-cone juncture. These regions are examined in greater detail
below.) Figure 8 shows the variation of surface pressure and relative error
with mesh size for two points, X/Rb = 0.67 and 6.1. The relative error is
about 3 percent for the finest mesh size and computing time was about
8 minutes.

Comparison with another numerical solution.- In reference 14, results are
presented for the perturbation flow field over a 10° sphere-cone at a Mach
number of 15. The calculations of reference 14 were based on the linearized
characteristics method and therefore provide the opportunity for a direct
check of the present computer program. However, before msking a comparison,
it is necessary to discuss two points: (1) discontinuities in the solutions,
and (2) the differences of results presented in terms of wind and body axes.

Discontinuous solutions to the perturbation flow field were also noted
in reference 14, and a method for calculating these solutions was discussed
in some detail; results were not presented, however. o attempt is made in
the present paper to treat the discontinuous solutions analytically, but it
can be shown numerically that the effects of a discontinuocus curvature are
localized. This is done by computing the flow over a body with a short tran-
sition curve between the sphere and cone segments. Such a body is shown in
figure 9. If the end point of the transition curve is allowed to match a cone
which is slightly displaced from the original one, it is possible to express
the curve as a fifth-degree polynomial which provides continuity of the first
two derivatives at the starting point and of the first four derivatives at
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the end point. Figure 10(b) shows the pressure perturbation on this body in
the transition region and in the region of the first Mach wave reflection.
Figure 10(a) shows the pressure perturbation at the shock and the shock-angle
perturbation in the region where the Mach line from the sphere-cone juncture
reaches the shock. It is seen that the transition curve eliminates the dis-
continuity and that at some distance from this point the results are essen-
tially the same for both cases. This shows that the primary effects of the
discontinuous surface curvature are confined to limited regions of the flow
field. It must be emphasized, however, that the discontinuous Jjumps in the
pressure perturbation are a failing of the present expansion technique. From
the practical standpoint this failure is of minor consequence since in actual
flows the viscous boundary layer tends to smooth the discontinuous body
curvature.

To illustrate the effects of the wind-axes to body-axes transformation,
as discussed in appendix B, use is made of results for a 150 sphere-cone at a
Mach number of 10. Figure 11(a) shows the pressure perturbation at the body
and at the shock, and figure 11(b) shows the shock position and angular per-
turbations. In the part of the flow field outside the reglon of influence of
the conical portion of the body, all perturbations are zero with respect to
wind axes. Also, in this region the perturbations with respect to body axes
are determined by the solution of the axisymmetric flow field. (see appen-
dix B). Downstream from the Mach line originating at the sphere-cone junc-
ture, a body-axis variable is obtained by a combination of the wind-axis
variable and the additional term obtained from the axis transformation. The
contributions of both terms are evident in figure 11.

With these points in mind attention is directed to a comparison with the
results of reference 14. Some of these results are reproduced in figure 12
in addition to those of the present computer program. Figure 12(a) shows the
pressure perturbation for the body and the shock. The two results agree in
general trend, but there are sizable differences in the pressure perturbation
both at the shock and body which seem larger than estimated numerical errors.
In view of the discussion of the preceding paragraph, the difference in the
shock-wave pressure 1s likely due to differences in the nonyaw solution. This
could possibly account also for the disagreement in body pressures. Fig-
ure 12(b) shows the variation of the crossflow angle along the body and shock
surfaces. At the shock for x greater than 7.5 the two results do not agree.
A reason for the disagreement has not been definitely established; however, it
seems to be a result of differences in the shock boundary condition. The dis-
continuity in the crossflow angle in the present solution follows directly
from the boundary condition which was written in terms of the shock angular
perturbation, oy. The variation of this parameter with axial distance is
shown in figure 12(c). Reference 14 presents the shock radial perturbation
(rig. 12(c)), but not the angular perturbation, and therefore cause of the
difference in crossflow angle cannot be established with certainty. It is
noted, however, that the present results seem somewhat more consistent with
the over-all flow picture in that the solutions tend to the cone solution at
a large distance from the nose.
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To this point, the results presented have pertained primarily to the
numerical accuracy of the computer program described herein. There remains,
however, the question of applicability of the linearized characteristics
method for predicting the flow field over bodies at small yaw angles. This
topic is discussed next.

Applicability of the linearized-perturbation method.- Strictly applied,
the present method yields only the initial slope of the flow variables with
respect to yaw angle. However, such a linear approximation can in many cases
provide useful results over a range of yaw angles. In order to estimate the
range of angles over which the linear approximation may be applied, one must
compare linearized results with experiment, exact theories, or with solutions
of the second order perturbatiqn problem. Since results of exact theories are
not available for the problem at hand, this section will rely on comparisons
with experiment and with shock-expansion methods which are applicable to
pointed bodies (see refs. 16 and 18). Although the shock-expansion theory
must be considered an approximate method, it does include second-order effects
of the yaw angle and, therefore, provides a check on the range of applicabil-
ity of the present method.

In reference 18 comparisons are made between the predictions of the
shock-expansion method and experimental results for yawed ogives. Some of
these results are reproduced in figure 13 which also shows the predictions of
the present method. The theories and the experimental points are in reason-
able agreement at o = 0 and o = 5. At o = 10° the present method predicts
pressure coefficients somewhat lower than predicted by shock-expansion theory.
Both methods use cone flow for initial values, but second-order perturbations
were included in the shock-expansion results while the present method uses
only the linear term. Therefore, the difference between the two theories at
x/L = 0 can be attributed to this second-order term. It may also be inferred
that the difference at other body stations is due to this term.

The shock-expansion method is often used to predict 1ift- and moment-
curve slopes for pointed bodies. However, for ogive-cylinder bodies the
theory does not work well. TFor this reason the second-order shock-expansion
theory was developed in reference 22. TInitial slopes of the normal-force
curve and center-of-pressure locations for an ogive-cylinder are shown in
figure 14. It is seen that the present method generally agrees with second-
order shock-expansion theory except for predicting the center of pressure of
ogive-cylinders of large fineness ratios. The reason for this difference is
difficult to assess with the present information (it cannot be attributed to
second-order yaw effects since only initial slopes are involved).

For blunt-nosed bodies, the shock-expansion method is not applicable,
and results of other sufficiently accurate theories are not available. How-
ever, unpublished experimental data which are ideally suited for such a com-
parison have been made available by Mr. Joseph W. Cleary of NASA. The data
were obtained from the Ames 3.5-Foot Hypersonic Wind Tunnel and include sur-
face pressure distributions on yawed spherically blunted cones. Figure 15
compares the predictions of the present method with some of this experimental
data for 150 and 300 cones at a Mach number of about 10. For both cones, the
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theory and experiment agree as well for 2° yaw as for zero yaw. However, for
50 yaw the agreement is better for the 30° than for the 15° cone. The dis-
agreement at 5° yaw for the spherically blunted 15° cone is attributed Pprima-
rily to second-order yaw effects which are neglected by the present theory.

In these comparisons with experiment it is seen that the accuracy of the
linear approximation depends on the cone angle, and it might be anticipated to
depend also on the Mach number. For blunt bodies, very little can presently
be established concerning the dependence of the linear approximation on blunt-
ness and Mach number. However, for slender bodies one can obtain some feel
for these effects by applying hypersonic similarity concepts (e.g., refs. 16
and 23). Thus for slender bodies at large Mach numbers, similar flows are
obtained if the parameters Kt = M/f and Kq =#Mr are unchanged. TFor these
similar flows the error in the linear approximation depends on Kq only.
Figure 16 shows conditions for flows which are similar to that for the ogive
of figure 13, and these conditions show how the accuracy of the present method
depends on Mach number and fineness ratio. Figure 16(a) indicates that for a
fixed error the yaw angle must decrease with increasing Mach number, but that
the fineness ratio must increase in order to obtain a similar flow. ZFor both
the error and the Mach number fixed, figure 16(b) shows that the yaw angle
must decrease with increasing fineness ratio, a trend also noted in the blunt-

body results of figure 15.

While the curves of figure 16 indicate how the error varies with fineness
ratio, they do not show the Mach number wvariation for a fixed fineness ratio,
nor do they provide a means for estimating its magnitude. Tor this purpose
one can use second-order cone solutions. Figure 17 shows the ratio of the
second- to first-order pressure perturbations as obtained from the tabulated
results of reference 5 and from the thin-shock-layer theory of reference 2.
Based on this ratio, the error in the linear approximation can be computed
(neglecting higher order terms), and is shown on the ordinate of figure 17 for
20 yaw. It should be noted that this error is based upon the increment in
pressure due to yaw, and that the percentages would be decreased if based upon

the actual surface pressure.

For cone angles from about 5° to 45° Cheng's shock-layer theory and
Kopal's numerical results both indicate a decrease in the error with increas-
ing cone angle. The shock-layer theory passes through zero for a 45° cone and
predicts increasing error for larger or smaller angles. For very small cone
angles the approximations of shock-layer theory are violated and the decrease
in error for cone angles less than 5° should be discounted. While the results
of figure 17 are obtained for pointed cones they can, if used with caution,
provide error estimates for blunted bodies. It is noted in the figure that
the shock-layer theory approaches Newtonian theory for large Mach numbers, and
therefore should provide error estimates for those conditions where the
Newtonian approximation is applicable. The predicted decrease in error as the
cone angle tends toward 45° is in agreement with the experimental results of

figure 15 for sphere-cones.

Finally, it should be noted that for bodies of high fineness ratio a
viscous crossflow (refs. 25 and 26) may become important. This viscous effect
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is second order in angle of attack so that it has a variation with yaw angle
which is essentially the same as that predicted by Newtonian theory. Recent
experimental results on second-order viscous effects have also been obtained
for cones in reference 27.

The first-order theory described herein provides the correct initial
slope with respect to yaw, and is applicable so long as the second-order
crossflow effects (inviscid or viscous) do not upset the linearity of the
desired quantity (the 1ift curve, for example). The angle of yaw at which
this occurs depends on the Mach number, the body slope, and on its over-all
fineness ratio. A rule that has in the past been applied to pointed bodies
- states that the second-order yaw terms become important when the yaw angle
approaches the half-angle of a cone tangent to the nose of the body.

CONCLUDING REMARKS

A computer program based on the linearized characteristics method was
developed for calculating the supersonic portion of the flow of a perfect gas
over arbitrary bodies of revolution at small yaw; a specialization of the
general approach resulted, also, in a program which gives the first-order
effects of yaw for pointed cones. First-order perturbation equations were
derived in a form consistent with an existing method of characteristics com-
puter program for the calculation of axisymmetric flows and the perturbation
equations were incorporated into this program. This program was used to com-
pute some example flows for establishing the accuracy and applicability of the
method.

The results from the present method agreed with tabulated exact solutions
for cone flow. Also, solutions for sphere-cone bodies tended to the cone
solution at a large distance from the nose. An examination of the effect of
mesh size on the results was made to establish the numerical accuracy of the
results. Present solutions were then compared with published results for a
10° sphere~cone which had been computed by basically the same method. In
general the results agreed, but some differences seemed greater than possible
numerical errors. Some of the differences were attributed to the initial
values obtained from the axisymmetric blunt-body solution for a sphere.

The applicability of the present method for predicting flows over bodies
at finite yaw angles was assessed by comparison with experiment and, where
possible, with other theories. For an ogive of fineness ratio 3, the results
of the present method agreed with those from experiment and shock-expansion
theory at yaw angles up to about 50. For spherically blunted 150 and 30°
cones, the present theory agreed well with experiment up to 2° yaw for the 15°
cone and up to 5° yaw Ffor the 30° cone. Estimates based on cone-flow theories
indicate that for fixed yaw angle the error in the present linear approxima-
tion is least for 45° cones and increases for larger and smaller cone angles.
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For slender pointed bodies, a practical rule which has been used, limits the
present method to yaw angles less than the half-angle of the nose.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., March 3, 1964
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APPENDIX A

INTRINSIC FORM CF THE EQUATTIONS OF MOTION OF A PERFECT

GAS FOR THREE-DIMENSIONAL FLOW

In development of the first-order perturbation equations it was found
convenient to begin with the equations of motion written in terms of intrinsic
coordinates, that is, coordinates consisting of the streamline and two of its
normals. The equations in this form are given in reference 16 for axisymmet-
ric flow. These are

8= Bp 89 sin ©

2 Tamt T - ° (Ala)
1 9 3¢ _
7® on 5 T 0 (Al1b)

The problem at hand is to derive the analogous set of equations which are
applicable to three-dimensional flow without axial symmetry. These will fol-
low from the gas dynamics equation (i.e., combined momentum and continuity
equations) and the momentum equation

- - =4
a2 div V - V . grad <%%>

1 V2 o T
5 grad p + grad = )+ VXcurlV

1
(@]

(A2)

1
(@]

(A3)

First, however, it is necessary to define the coordinate directions.

The streamline direction is uniquely defined in terms of the velocity
vector, ¥ = Vs, and for two-dimensional flow the normal coordlnate also is
uniquely defined in terms of v (for axisymmetric flow 1 is in the meridi-
onal plane @ = constant) However, in the three-dimensional case there are
many possible normals to the velocity vector. One such possibility, which is
not used here, is the normal which lies in the osculating plane and is called
the principal normal to a curve. For the present perturbation problem it was
found convenient to choose the normal T which lies in the meridional plane
(fig. 1). The second normal, T, is then uniquely defined in terms of ¥ and
T. These unit vectors may be expressed in terms of two rotation angles by
starting with the =xp, Ty, 2zy axes shown in figure 1. This initial system of
axes is rotated by angle € about the zp axis, and the resultant system is
rotated by angle ¢ about T; the angle 6 1is called the flow angle and @
the crossflow angle. If ¢ = 0, then 8 lies in the meridional plane and the
normal T reduces to the usual normal for two-dimensional flow. With the
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help of figure 1, these unit vectors may be easily written in terms of
components in the Xy, Ty, zyp directions (i.e., in terms of unit vectors Exs

8y, &g)-

T = cos @ cos O €8x + cos @ sin 0 8 + sin @ €
T = -sin 0 B¢ + cos O ér (AL)
T =-sin ¢ cos 9 - sin 6 sin @ &, + cos @ §®

Attention is now directed to the equations of motion (A2) and (A3). When
the velocity vector V is eliminated in favor of ¥, and the dot product of
equation (A3) is taken first with 1 and then with ¥, the following equa-
tions are obtained after some manipulation with vector identities

2‘_5 —-—

5%5 s . grad p + div s = O (A5a)
1 7 a T 15=0 (a5p)
Fn.gra p + . Cur S = 5b
1z a o 18=0 (aA5¢)
E;é . grad p - n . curl 5 = 5c

These equations are the generalization of the intrinsic equations (A1) to
general three-dimensional flow. To express them in the more familiar form of
equations (Al) it is only necessary to expand the div and curl operators
using the well-known vector formulas. To this end it is convenient to use
equations (Ah4) and expand in terms of cylindrical coordinates (note that
(1/r)(3/00) = cos ®(0/0t) + sin ©(d/0s)). The result is

o .
f_v_gch-g@g_f_*ueo (a6a)
* a2
_%522+ os(p_g_g__sgn_%ﬁ,%o (46b)
o
1 Op 09  sin @ sin 6 _
E§§ St T Ss T - = 0 (A6c)

These equations can be simplified for flows which deviate by only a small
degree from axisymmetric flow. Thus by meking the usual linearizing approxi-
mations to the crossflow angle, the following equations of motion are obtained

B %, 00,3, sino_
E s Tt T T 0 (ATa)
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1

1 Op , 96
1 %, 99 A
2o 38 - 0 (870)

1 % , % , ®sino

;;[—é§£+—a—s+ e = 0 (ATc)

Equations (A7) are the desired generalizations of equations (Al), and are used
for the development of the first-order perturbation equations.
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APPENDIX B
EQUATIONS OF TRANSFORMATION FROM WIND TO BODY AXES

In the present development of the perturbation equations the need arises
to change from variables expressed with respect to a wind-axis system to the
corresponding variables expressed with respect to a body oriented system. The
transformation equations giving this change are derived in this appendix first
for scalar, and then for vector quantities. Consistent with the present anal-
ysis of the problem, these equations will give only the first-order effect in
terms of a series expansion of the yaw angle. It i1s noted that such trans-
formations were discussed in references 6 and 7 (including second-order terms)
Tfor use with the tabulated solutions for cone flow, reference 5.

SCATAR QUANTITIES

Consider any scalar quantity at a point (x,y) expressed as S(x,y) in
wind-oriented coordinates and as S'(x',y') in the rotated (body) coordinates.
Suppose now that point A in sketch (f)
represents the location of a probe that
is fixed with respect to the body at
zero yaw. After rotation of the body
by angle o, the probe will move to
point B. Since a scalar can have only
one value at a point regardless of the
reference frame, that 1s, since

S(X;Y) = S'<X':y') (Bl)

the rotation is equivalent to a trans-
lation of the probe in the original
reference frame. The desired transfor-
mation must therefore determine condi-
tions at point B in terms of known
conditions at point A. This is done
by expanding S in a series about
Sketch (f) point A where it has the value
S(xp,yp)- Thus

S'(xg'syg') = 8'(xp,yp) = S(xa,yp) + (x4 - x") §§ + (yp - ") §§ oo .
* Y (82)

For small rotations, the prime coordinates are given by
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x' =x - ay
y' =y +ax
(B3)
z' = 7
r' =1r + ax cos @
Substituting equations (B3) into (B2) and using the perturbation form
S = S5 + aSy,
yields the following equation which is valid to first order in
S@,(XA’XA) = 8a(xp,yp) + ya %;? - Xp 2;? (B4)

Equation (BA4) states that the perturbation quantity Sg' at point A is given
in terms of the value Sq at point A, plus an additional term proportional to
the gradient of the axisymmetric field So(x,y).

VECTOR QUANTITTES

In developing the axis transforma-
tion for vector quantities, the vectors
are first expressed in terms of compo-
nents along the same set of base vec-
tors. These components can then be
transformed according to equation (B4),
developed for scalars. Consider the
velocity vector with components u,v,w
shown in sketch (g). The x',y',z'
coordinate system is obtained by rotat-
ing x,y,z &about the 2z axis. The
velocity vector may be written in terms
of components along wind and body axes
as follows:

Sketch (g)
V(x,r,0) =i + (v cos @ - w sin )3 + (w cos © + v sin o)k (B5a)
and
V'i(x',r',0') =u's + (v' cos &' - w' sin 0')3 + (w' cos @' + v' sin &'k’

(BSDb)

— a —_—

PR . Pyl Bl B
where 1i,Jj,k are unit vectors along x,y,z axes and i ,j ,k are along
x',y',z! axes.
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The vector, 7, can also be written in terms of components along the primed
axes in the following manner.

V=a1i" +B] + Ck' (B6)
where
A=V .3
B=V .3
C=V.EK

For small rotations the scalar products of the unit vectors are given by

=1 =1 =1

I =3 .3 =k .k =1
Y.E':E.E':E.‘i":l‘é.j’:O (BT)
i.3"=-5.1" =a

Equations (B5a) and (B7) can be used to write the components of equation (B6)
in terms of unprimed variables:

A=u+alvcos @ - w sin @)

B=ou+ (v cos ® - w sin @) (B8)

Il

C = (wcos @+ v sin @)
The condition that the vector V be independent of the coordinate system
V(x,y,0) = V' (x',y',9") (89)

yvields, upon equating coefficients of equations (B5b) and (B6), three scalar
equations analogous to equation (Bl). These are

u-olveos @-wsin @) =u’
(v cos @ - w sin @) + au = (v' cos @' - w' sin O') (B10)
(w cos ® + v sin @) = (w' cos ®' + v' sin @')

The angle @' may be written in terms of & by means of the usual expansions
for small rotations, equations (B3), resulting in the following relations:

cos @' = cos O + « % sin® @ (B11)

sin ¢ cos @ (B12)

Rk

gsin ©' = gin ¢ - o
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Now with equations (Bll) and (B12) and the perturbation expansions

u = ug + auy cos @
V = Vo + vy cos @ (B13)
W= wy sin @

the following first-order equations are obtained from equations (B1O)
u'(x',r') = -vo(x,r) + uy(x,r)

vi'(x',r') = wo(x,r) + vi(x,r)

]

wi'(x',r")

]

~uo(x,r) + £ volx,r) + wilx,r)

Finally, application of equation (B4), which accounts for the gradient of the
axisymmetric field, yields the following transformations for the vector
conmponents:

. ou, ou,
U-l'(x;i') = 'VO(X;I') + ul(x,r) +y E(Q - X 'a—;
ov v
vi'{x,r) = uglx,r) + vilx,r) + y —2 - x —2 (B1k)
ox oy
Wl,(XJI‘) = "U-O(X)r) + "_?E{ VO(X:r) + Wl(X,I‘)
The corresponding expressions for angular variables may be obtained from
equations (B1lY4) and the definitions
U1 = Vi cos 6 - 93Vp sin g
} (B15)
Wi = Vocpl
with the result
90, Gl
61" =1 + 01 +y —= - X —2 (B16)
ox oy
and.
®1' =X sin 6, - cos 6, (BLT)
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Figure 2.- Rotations defining the perturbation angles.
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